オイラーの公式
KIT数学ナビゲーション
 

オイラーの公式  

e θ =cosθ+sinθ  

■導出計算

e x  をマクローリン展開すると,

e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + 1 4 ! x 4 + + 1 n ! x n +  ・・・・・・(1)

(1)の x に形式的に θ を代入して計算してみると,

e θ = 1 + ( θ ) + 1 2 ! ( θ ) 2 + 1 3 ! ( θ ) 3 + 1 4 ! ( θ ) 4 + 1 5 ( θ ) 5 + 1 6 ( θ ) 6 + 1 7 ( θ ) 7 +

= 1 + θ 1 2 ! θ 2 1 3 ! θ 3 + 1 4 ! θ 4 + 1 5 θ 5 1 6 θ 6 1 7 θ 7 +

= ( 1 1 2 ! θ 2 + 1 4 ! θ 4 1 6 θ 6 + ) + 1 5 ( θ ) 5 + 1 6 ( θ ) 6 + 1 7 ( θ ) 7 +  ・・・・・・(2)

cosθ  のマクローリン展開は,

cosθ=1 1 2! θ 2 + 1 4! θ 4 1 6 θ 6 +  ・・・・・・(3)

sinθ  のマクローリン展開は,

sinθ=θ 1 3! θ 3 + 1 5 θ 5 1 7 θ 7 +  ・・・・・・(4)

(2)に(3),(4)を代入すると,

e θ =cosθ+sinθ  

となり,オイラーの公式(Euler's Formula)が得られた.

複素数における指数関数の定義を参照

 

ホーム>>カテゴリー分類>>複素数 >>複素解析>>オイラーの公式

最終更新日: 2016年3月10日

[ページトップ] 金沢工業大学