”χ•ͺ(4)‚Μ1D(2)‚Μ‰π“š

”χ•ͺ(4)‚Μ1D(2)‚Μ‰π“š
y= x x
y = e log x x = e xlogx
y = e xlogx · ( xlogx ) = x x ·( logx+x· 1 x ) = x x ( logx+1 )
ΛŽŸ‚Μ–β‘θ‚Μ‰π“š
Λ‰π“š2
Λƒqƒ“ƒg1,ƒqƒ“ƒg2,ƒqƒ“ƒg3,ƒqƒ“ƒg4
Λ‰πΰ1
Λ”χ•ͺ(4)‚ΜTOP‚Φ–ί‚ι