正弦波を表す式:波動関数 y=y( x,t )
(a)
原点 O での時刻 t における変位を y=y( 0,t )=Asin 2π T ⋅t とする.位置 x の点 P には時間 x v だけ遅れてこの変位が伝わるから,時刻 t における P の変位 y=y( x,t ) は, x v だけ前の時刻の O 点の変位 y=y( 0,t− x v ) に等しい.
(b)
時刻 t=0 での波の式: y( x,0 )=−Asin 2π λ ⋅x は t 秒後に vt だけ x 軸方向に平行移動されるから x を ( x−vt ) に置き換えればよい.
★正弦波の時間的・空間的変化を示した図(速さ v で進む各時間における波形)
ホーム>>物理基礎>>第3編 波>>第1章 波の性質>>正弦波を表す式
学生スタッフ作成
2021年4月15日