対数方程式の解法

対数方程式の解法

■関連動画

  1. 底をそろえる(対数計算の手順に従う).

  2. log a x= log a k  の形に式を導びく. 導けない場合は3へ

    答えは  x=k

  3. log a f( x )= log a k  の形に式を導びく. 導けない場合は4へ

    答えは  f( x )= k   を解くことによって得られる .

  4. 方程式が上記の形に導けない場合は, log a x=t  とおいて整式に帰着する .

    まず t について解き,得られた t より x を求める.

    例:  ( log 2 x ) 2 + log 2 4 x 3 =0

    この場合, log 2 x  に着目し, log 2 x=t  とおいて与式を以下のように解く

    ( log 2 x ) 2 + log 2 4 x 3 = 0 ( log 2 x ) 2 + log 2 4 + log 2 x 3 = 0 ( log 2 x ) 2 + 3 log 2 x + log 2 4 = 0 t 2 + 3 t + 2 = 0 ( t + 2 ) ( t + 1 ) = 0 t = 1 , 2

    • t=1  のとき

      log 2 x=1x= 2 1 = 1 2

    • t=2  のとき

      log 2 x=2x= 2 2 = 1 4

    よって,

    x= 1 2 , 1 4

  5. 真数条件(真数が正である条件)を満たしていることを確認する.満たしていないものは除外する.

 

ホーム>>カテゴリー別分類>>指数/対数>>対数方程式の解法

最終更新日: 2024年5月17日