微分の計算問題

■問題

次の問題を微分せよ.

f( x )= 4 x 2 1 ( 2x+1 )( x1 )

■答

f x = 1 x1 2

■ヒント

関数の積の微分分数関数の微分Uより

{ h( x ) g( x ) } = h ( x )g( x )h( x ) g ( x ) g ( x ) 2

の公式を用いる.

■解説

f( x )= 4 x 2 1 ( 2x+1 )( x1 )

f ( x ) = ( 4 x 2 1 ) ( 2x+1 )( x1 )( 4 x 2 1 ) { ( 2x+1 )( x1 ) } { ( 2x+1 )( x1 ) } 2

(分数関数の微分Uを参照)

= 8x( 2x+1 )( x1 )( 4 x 2 1 )( 4x1 ) { ( 2x+1 )( x1 ) } 2

(関数の積の微分より, 2x+1 x1 = 2x+1 x1 + 2x+1 x1

= 8x( 2 x 2 x1 )( 16 x 3 4 x 2 4x+1 ) { ( 2x+1 )( x1 ) } 2

= 4 x 2 +4x+1 2x+1 x1 2 = 2x+1 2 2x+1 x1 2 = 1 x1 2

別解

ホーム>>カテゴリー分類>>微分>>微分に関する演習問題>>微分の計算問題>>この問題

学生スタッフ作成

最終更新日: 2021年3月22日