定数係数線形微分方程式
y ( n ) + A n−1 y ( n−1 ) +⋯+ A 1 y ′ + A 0 y =hsinax+kcosax
書き換えると
f( D )y=hsinax+kcosax
について
(1) f( ia )≠0 ならば,この微分方程式は
y=Asinax+Bcosax
という形の特殊解をもつ. ⇒導出
(2) f ( i a ) = 0 であり , t = i a が特性方程式 f ( t ) = 0 の1重の解であれば,この微分方程式は
y = x ( A sin a x + B cos a x )
ホーム>>カテゴリー分類>>微分>>微分方程式>>非同次項がsin axとcos axのとき
学生スタッフ作成 最終更新日: 2023年6月13日