KIT Mathematics Navigation
(which is translated by google translate from Japanese to other language)
number & formula function geometry power & logarithm vector trigonometric function
complex number derivation integration probability matrix others

陰関数の極値

■問題

次の関係で定義される陰関数 極値を調べよ.

■答

のとき,極小値 をとり, のとき,極大値 をとる.

■ヒント

関数の極値の定理2を用いて極大・極小を判断する.

■解説

 ・・・・・・(1)

とおく.

(1)を偏導関数の定義より, を定数とみなして で微分する.

よって,となるのは

より, となる.このとき

を与式に代入して


より

を代入すると

となり, と同じ式となるので,同様に

となる.

故に極値をとる候補は, の関係から, を代入したときに得られる の2点となる.

次に,上記2点( ,言い換えると, )における を求める.この場合

 ・・・・・・(2)

の関係がある.(関数の極値の定理2を参照)

 ・・・・・・(3)

 ・・・・・・(4)

(3),(4)を(2)に代入する.


のとき は,

よって

のとき

よって

以上から, のとき,極小値 をとり, のとき,極大値 をとる.

 

ホーム>>カテゴリー分類>>微分>>偏微分>>問題演習>>陰関数の極値

学生スタッフ作成

最終更新日: 2023年9月17日