次の問題を微分せよ.
y=sin(3x+2)
y′=3cos(3x+2)
基本となる関数の導関数より
(sinx)′=cosx
合成関数の微分の公式
{f(g(x))}′=f′(g(x))·g′(x)
を用いる.
y′={cos(3x+2)}(3x+2)′={cos(3x+2)}⋅3=3cos(3x+2)
(y=sinu=f(u) ,u=3x+2=g(x) と考えている.)
ホーム>>カテゴリー分類>>微分>>微分に関する演習問題>>微分の計算問題>>この問題
最終更新日: 2023年10月7日
[ページトップ]
利用規約
google translate (English version)