Processing math: 100%
関連するページを見るにはこのグラフ図を利用してください.
応用分野: 因数分解の基本公式

因数分解の公式 (x+y+z)(x^2+y^2+z^2-xy-yz-zx)

x3+y3+z33xyz

x に着目し,降べき順に式を整理する.

x3+y3+z33xyz

=x33xyz+y3+z3

=x33xyz+(y+z)(y2yz+z2)

f(x)=x33xyz+(y+z)(y2yz+z2)

f(x)=0 となるx の値は,式の対称性を考えるとx=(y+z) が候補にあがる.

f((y+z))={(y+z)}33yz{(y+z)}+(y+z)(y2yz+z2)

=(y+z){y22yzz2+3yz+y2yz+z2}

=(y+z)·0

=0

よって,f(x)(x+y+z)因数に持つ.

x2+(y+z)x+(y2yz+z2)x+y+z)¯x33yzx+y3+z3x3(y+z)x2¯(y+z)x23yzx+y3+z3(y+z)x2(y+z)2x¯(y2yz+z2)x+y3+z3(y2yz+z2)x+y3+z3¯0

したがって

f(x)=(x+y+z){x2(y+z)x+(y2yz+z2)}

=(x+y+z)(x2+y2+z2xyyzzx)

 

ホーム>>カテゴリー別分類>>数と式>>因数分解の公式>>(x+y+z)(x^2+y^2+z^2-xy-yz-zx)

最終更新日: 2023年7月14日

[ページトップ]

金沢工業大学

利用規約

google translate (English version)