問題を解くのに必要な知識を確認するにはこのグラフ図を利用してください.

基本的な関数の微分 1x1x

■問題

次の関数の導関数微分の公式および導関数の定義式を用いて求めよ. 

f(x)=1xf(x)=1x

■動画解説

微分に関する動画一覧のページへ

■答

f(x)=12xx

■解説

f(x)=1x=x12

と表すことができる.

●公式を用いた計算

微分の公式を用いると

f(x)=12·x121

=12·x32

=12·1xx

=12xx

となる.

●導関数の定義を用いた計算

導関数の定義式を利用すると

f(x)=limΔx0f(x+Δx)f(x)Δx

=limΔx01x+Δx1xΔx

分子を通分する.

=limΔx01Δxxx+Δxxx+Δx

分母,分子に x+x+Δx を掛けて分子の有理化をする.

=limΔx01Δx (xx+Δx)(x+x+Δx)xx+Δx(x+x+Δx)

=limΔx01Δx x(x+Δx)xx+Δx(x+x+Δx)

=limΔx01Δx Δxxx+Δx(x+x+Δx)

=limΔx01xx+Δx(x+x+Δx)

=12xx

となる.

 

ホーム>>カテゴリー分類>>微分>>微分に関する演習問題>>導関数の定義を用いた微分の計算問題>> 1x の微分

最終更新日: 2025年3月27日

[ページトップ]

金沢工業大学

利用規約

google translate (English version)