問題を解くのに必要な知識を確認するにはこのグラフ図を利用してください.

基本的な関数の微分 x3

■問題

次の関数の導関数微分の公式および導関数の定義式を用いて求めよ. 

f(x)=x3

■動画解説

微分に関する動画一覧のページへ

■答

f(x)=13x23

■解説

f(x)=x3=x13

と表すことができる.

●公式を用いた計算

微分の公式を用いると

f(x)=13·x131 =13·x23 =13·1x23 =13x23

となる.

●導関数の定義を用いた計算

導関数の定義式を利用すると

f(x) =limΔx0f(x+Δx)f(x)Δx

=limΔx0x+Δx3x3Δx

a3b3=(ab)(a2+ab+b2) の関係(ここを参照)を利用して分子の有理化をする.分母,分子に (x+Δx3)2+x+Δx3x3+(x3)2 を掛ける.

=limΔx0 (x+Δx)xΔxx+Δx32+x+Δx3x3+x32

=limΔx0 1x+Δx32+x+Δx3x3+x32

=13x23

となる.

 

ホーム>>カテゴリー分類>>微分>>微分に関する演習問題>>導関数の定義を用いた微分の計算問題>> x3 の微分

最終更新日: 2025年3月24日

[ページトップ]

金沢工業大学

利用規約

google translate (English version)

Chat window