問題を解くのに必要な知識を確認するにはこのグラフ図を利用してください.

平面図形の重心を求める問題

■問題

直線 y=32xと直線x=2x 軸で囲まれた図形の重心 G の位置を求めよ.ただし,重心 の x 座標をxGy 座標を yG とする.

■答

(xG,yG)=(43,1)

■ヒント

平面の重心の計算より

xG=1Sabxf(x)dx

yG=1Scdyg(y)dy

の公式を用いる.

■解説

●図形の面積Sを求める

図より(面積の求め方は,面積の計算を参照)

S=0232xdx=3202xdx=32[12x2]02=32{12(2202)}=32(12·4) =32·2=3

xGを求める

xG=1S02xf(x)dx

S=3f(x)=32xを式に代入する.

=1302x·32xdx

=13·3202x2dx

=12[13x3]02

=12{13(2303)}

=12(13·8)

=12·83

=43

yGを求める

まず,gy を求める.

y=32x より

x=23y

よって

gy=223y

となる

yG=1S03yg(y)dy

=1303y·(223y)dy

=1303(2y23y2)dy

=13y229y303

=13322933

=13(96)

=13·3

=1

以上より,図形の重心 G の位置は, (xG,yG)=(43,1) となる.

 

ホーム>>カテゴリー分類>>積分>>積分の問題>>定積分の問題>>平面図形の重心を求める問題

学生スタッフ作成
最終更新日: 2023年11月22日

[ページトップ]

金沢工業大学

利用規約

google translate (English version)