問題を解くのに必要な知識を確認するにはこのグラフ図を利用してください.

平面図形の重心を求める問題

■問題

曲線 y=34x2 と直線x=2x軸に囲まれた図形の重心 G の位置を求めよ.ただし,重心のx 座標をxGy 座標をyGとする.

■答

(xG,yG)=(32,910)

■ヒント

平面の重心の計算より

xG=1Sabxf(x)dx

yG=1Scdyg(y)dy

の公式を用いる.

■解説

●図形の面積Sを求める

図より(面積の求め方は,面積の計算を参照)

S=0234x2dx=3402x2dx=34[13x3]02=34{13(2303)}=34(13·8)=34·83=2  

xGを求める

xG=1S02xf(x)dx  

=1202x·34x2dx  

=12·3402x3dx  

=38[14x4]02  

=38{14(2404)}  

=38(14·16)  

=38·4  

=32  

yGを求める

まず,gy を求める.

y=34x2 より

x=233y

よって

gy=2233y

となる

yG=1S03yg(y)dy  

=1203y·2233ydy  

=1203(2y233y32)dy  

=12y223325y5203  

=12324315352  

=1294315323   

=129365    

=12·95

=910  

以上より,図形の重心Gの位置は,(xG,yG)=(32,910) となる.

 

ホーム>>カテゴリー分類>>積分>>積分の問題>>定積分の問題>>平面図形の重心を求める問題

学生スタッフ作成
最終更新日: 2023年11月22日

[ページトップ]

金沢工業大学

利用規約

google translate (English version)