1次関数,2次関数などに関する問題
■関数の基本に関する問題
関数f(x)f(x)
がf(x)=2x2+3x+1 の時,f(2),f(a+3) の値を求めよ.⇒ 解答
関数
y=1x−2
について,定義域と値域を答え,さらに
x
が
a
から
a+1
まで変化したとき
関数の値の変化量
Δy
を求めよ.f(x)=1x−2
とおくと,Δy=f(a+1)−f(a)
となる.⇒ 解答
-
次の関数は,偶関数,奇関数,どちらでもない,かを判定せよ.
(1) f(x)=x2x2+1
(2) f(x)=|x+2|
(3) f(x)=√4−x2 ⇒ 解答
■1次関数に関する問題
- 1次関数の式(直線の方程式)を求める問題
- 傾きが
2
,
y
切片が
5
である直線の方程式を求め,グラフをかけ. ⇒ 解答
- 点
(2,3)
を通り,傾きが
12
である直線の方程式を求め,グラフをかけ. ⇒ 解答
- 2点
(2,3)
と
(5,9)
を通る直線の方程式を求め,グラフをかけ. ⇒ 解答
-
x
切片が
5
,
y
切片が
3
の直線の方程式を求め,グラフをかけ. ⇒ 解答
■2次関数に関する問題
- グラフの頂点が
(2,−3)
,
y
切片が
5
である2次関数の式を求め,グラフをかけ. ⇒ 解答
- グラフが3点
(5,2)
,
(2,−1)
,
(−1,14)
を通る2次関数の式を求め,グラフをかけ. ⇒ 解答
-
図は x
切片が
1
,
3
,
y
切片が
3
の2次関数のグラフである.グラフを表す2次関数の式を求めよ.⇒ 解答
- 放物線
y=−2x2+4x+7
と直線
y=2x−5
の交点を求めよ. ⇒ 解答
- 最大値,最小値を求める計算
■3次関数に関する問題
-
図は
x
切片が
−3
,
−1
,
2
,
y
切片が
−3
の3次関数のグラフである.グラフを表す3次関数の式を求めよ.⇒ 解答
-
図は
x
軸と点
(−2,0)
で交わり,点
(3,0)
で接し,y
切片が
3
の3次関数のグラフである.グラフを表す3次関数の式を求めよ.⇒ 解答
■絶対値の記号を含む関数に関する問題
-
y=2|x−1|+x
のフラフをかけ.
⇒ 解答
ホーム>>カテゴリー分類>>関数>>関数の演習問題>>1次関数,2次関数などに関する問題
最終更新日:
2024年9月26日