関連するページを見るにはこのグラフ図を利用してください.
応用分野: 外積

基本ベクトルにおける外積

基本ベクトル e 1 x 軸方向の基本ベクトル
e 2 y 軸方向の基本ベクトル
e 3 z 軸方向の基本ベクトルとする.

  • e 1 × e 2 = e 3

    外積の定義より,

    e 1 × e 2 大きさ

    | e 1 × e 2 |=| e 1 || e 2 |sin90° =1×1×1=1

    e 1 × e 2 の向きは

    e 3 方向 ( e 1 を原点Oを中心として e 2 に回転角度が180以下で回転させ重ねたとき右ネジの進む方向は e 3 方向となるので.)

    である.よって, e 1 × e 2 = e 3 となる.

  • e 1 × e 1 = 0

    e 1 × e 1 の大きさは,2ベクトルのなす角が0°であるので, e 1 × e 1 = e 1 e 1 sin0° =1×1×0=0
    よって, e 1 × e 1 = 0 となる.

以下同様にして

  • e 2 × e 3 = e 1

  • e 3 × e 1 = e 2

  • e 2 × e 1 = e 3

  • e 3 × e 2 = e 1

  • e 1 × e 3 = e 2

  • e 2 × e 2 = 0

  • e 3 × e 3 = 0

 

 ホーム>>カテゴリー分類>>ベクトル>>外積>>基本ベクトルにおける外積

最終更新日 2024年8月2日

[ページトップ]

金沢工業大学

利用規約

google translate (English version)