問題を解くのに必要な知識を確認するにはこのグラフ図を利用してください.

微分の計算問題

■問題

次の問題を微分せよ.

y= 3 x 2 2x+1 4

■答

y = 3 x 1 2 ( 3 x 2 2 x + 1 ) 3 4  

■ヒント

合成関数の微分より

{ f( g( x ) ) } = f ( g( x ) )· g ( x )

の公式を用いる.

■解説

y= 3 x 2 2x+1 4

(計算しやすいよう,式を指数を用いた形に変形する. a m n = a m n ここを参照)

= ( 3 x 2 2x+1 ) 1 4

y = 1 4 ( 3 x 2 2x+1 ) 3 4 ( 3 x 2 2x+1 )

= 1 4 ( 3 x 2 2x+1 ) 3 4 ( 6x2 )

= 2( 3x1 ) 4 ( 3 x 2 2x+1 ) 3 4  ( a r = 1 a r ここを参照)

= 3 x 1 2 ( 3 x 2 2 x + 1 ) 3 4

●別解

y = 3 x 2 2 x + 1 4

y= u 4 = u 1 4 u = 3 x 2 2 x + 1

とおく.

dy du = 1 4 u 1 4 1 = 1 4 u 3 4

d u d x = ( 3 x 2 2 x + 1 ) = 6 x 2

合成関数の微分の公式 d y d x = d y d u · d u d x を適用する.

d y d x = d y d u · d u d x = 1 4 u 3 4 ( 6 x 2 ) = 2 ( 3 x 1 ) 4 ( 3 x 2 2 x + 1 ) 3 4

( u = 3 x 2 2 x + 1 と置き換えていたのを元に戻す)

= 3 x 1 2 ( 3 x 2 2 x + 1 ) 3 4

ホーム>>カテゴリー分類>>微分>>微分に関する演習問題>>微分の計算問題>>この問題

最終更新日: 2024年7月12日

[ページトップ]

金沢工業大学

利用規約

google translate (English version)