Loading [MathJax]/jax/output/CommonHTML/jax.js
問題を解くのに必要な知識を確認するにはこのグラフ図を利用してください.

偏微分を含む証明

■問題

次のことを証明せよ.

z=f(x2y2) ならば yzx+xzy=0

である.

■ヒント

zxy でそれぞれ偏微分し,2式を連立させる.

■解説

偏導関数の定義より, y を定数とみなして x合成関数の微分を行う.

zx=f(x2y2)·2x

12x·zx=f(x2y2)

偏導関数の定義より, x を定数とみなして y で 合成関数の微分を行う.

zy=f(x2y2)·(2y)

(12y)·zy=f(x2y2)

以上より

12x·zx=(12y)·zy

12x·zx+12y·zy=0

両辺に 2xy をかける. 

yzx+xzy=0

 

ホーム>>カテゴリー分類>>微分>>偏微分>>問題演習>>偏微分を含む証明

学生スタッフ作成

最終更新日: 2023年8月24日

[ページトップ]

金沢工業大学

利用規約

google translate (English version)