問題を解くのに必要な知識を確認するにはこのグラフ図を利用してください.

部分積分の問題

■問題

次の問題を積分せよ(定積分).

1 4 x e 3x dx

■答

1 9 e 3 ( 4 e 9 1 )

■ヒント

部分積分法

f ( x )g( x )dx=f( x )g( x ) f( x ) g ( x )dx

を用いる.

■解説

f( x )= e 3x より, f ( x )= 1 3 e 3x

g( x )=x より, g ( x ) =1

として部分積分を行う.

1 4 x e 3x dx = 1 4 x ( 1 3 e 3e ) dx

= [ x 1 3 e 3x ] 1 4 1 4 ( x ) 1 3 e 3x dx

= 4 3 e 12 1 3 e 3 1 3 1 4 e 3x dx

= 4 3 e 12 1 3 e 3 1 3 [ 1 3 e 3x ] 1 4

= 4 3 e 12 1 3 e 3 1 3 ( 1 3 e 12 1 3 e 3 )

= 4 3 e 12 1 3 e 3 1 9 e 12 + 1 9 e 3

= 11 9 e 12 2 9 e 3

= 1 9 e 3 ( 11 e 9 2 )

 

ホーム>>カテゴリー分類>>積分>>積分の問題>>定積分の問題 >> 1 4 x e 3x dx

最終更新日: 2023年11月23日

[ページトップ]

金沢工業大学

利用規約

google translate (English version)