|
|||||||||||||
|
|||||||||||||
|
重積分の問題■問題次の重積分を計算せよ. ∬D(x2−2y)dxdy (D:x+y≤1,x≥0,y≥0) ■答−14 ■ヒント
y の積分範囲: 0→1−x x の積分範囲: 0→1 となる. ■解説∬D(x2−2y)dxdy =∫10{∫1−x0(x2−2y)dy}dx =∫10dx∫1−x0(x2−2y)dy =∫10dx[x2y−y2]1−x0 =∫10(−x3+2x−1)dx =[−14x4+x2−x]10 =−14
ホーム>>カテゴリー分類>>積分>>重積分>>重積分の計算問題>>問題 最終更新日: 2013年7月8日 |