∂∂x{f(x,y)g(x,y)}=(∂∂xf(x,y))g(x,y)+f(x,y)(∂∂xg(x,y))
∂∂x{f(x,y)g(x,y)}
=limh→0{f(x+h,y)g(x+h,y)}−{f(x,y)g(x,y)}h
=limh→0f(x+h,y)g(x+h,y)−f(x,y)g(x+h,y)+f(x,y)g(x+h,y)−f(x,y)g(x,y)h
=limh→0f(x+h,y)g(x+h,y)−f(x,y)g(x+h,y)h+limh→0f(x,y)g(x+h,y)−f(x,y)g(x,y)h
=limh→0f(x+h,y)−f(x,y)hg(x+h,y)+limh→0f(x,y)g(x+h,y)−g(x,y)h
=limh→0f(x+h,y)−f(x,y)hlimh→0g(x+h,y)+f(x,y)limh→0g(x+h,y)−g(x,y)h
=(∂∂xf(x,y))g(x,y)+f(x,y)(∂∂xg(x,y))
∂∂x{f(x,y)g(x,y)}=(∂∂xf(x,y))g(x,y)+f(x,y)(∂∂xg(x,y))