問題を解くのに必要な知識を確認するにはこのグラフ図を利用してください.

不定積分の問題

■問題

次の問題を積分せよ(不定積分).

3 x 2 10x8 x4 dx  

■答

3 2 x 2 +2x+C    Cは積分定数)

■ヒント

不定積分の基本式(2)より

{ f( x )±g( x ) } dx = f( x ) dx± g( x ) dx  ・・・・・・(1)

不定積分の基本式(1)より

c f ( x ) d x = c f ( x ) d x  ・・・・・・(2)

基本となる関数の積分より

x α dx= 1 α+1 x α+1 +C   ( α 1 以外の実数)  ・・・・・・(3)

の公式を用いる.

■解説

3 x 2 10x8 x4 dx  

3 x 2 10x8 x4 の分子の次数が分母の次数より小さくなるように,式を変形する

3 x 2 10x8 x4 = ( 3x+2 )( x4 ) x4 =3x+2

よって

= ( 3x+2 )dx  

= 3xdx+ 2dx

(項ごとに分けることが可能となるのは(1)を参照)

=3 xdx+2 dx

3,2 の前にくるのは(2)を参照)

=3× 1 2 x 2 +2×x+C    Cは積分定数)

((3)を参照)

= 3 2 x 2 +2x+C

 

ホーム>>カテゴリー分類>>積分>>積分の問題>>不定積分の問題>> 3 x 2 10x8 x4 dx

最終更新日: 2024年9月30日

[ページトップ]

金沢工業大学

利用規約

google translate (English version)