定積分の問題
■問題
次の問題を積分せよ(定積分).
■答
■ヒント
定積分の基本式より
置換積分法より
■解説
あらかじめ,
を求めておく.
・・・・・・(1)
とおいて置換積分をする.
→ ・・・・・・(2)
(
を微分すると
になるのは微分
を参照)
与式
上の式に(1),(2)を代入する.
(が積分記号
の前に移せるのは,不定積分の基本式を参照)
(基本となる関数の積分の
番目の式を参照)
(
は積分定数)
ここで,
と置換しているので
のとき
,
のとき
だから
(置換積分法を参照)
となる.
(
の証明を参照)
ホーム>>カテゴリー分類>>積分>>積分の問題>>定積分の問題>>
学生スタッフ作成
最終更新日:
2023年11月23日