微分方程式の公式を使った問題
■問題
次の微分方程式の一般解を求めなさい.
y
″
−5
y
′
+4y=0
■答
y=
c
1
e
x
+
c
2
e
4x
(ただし
c
1
,
c
2
は任意定数)
■ヒント
特性方程式を立てると
t
2
−5t+4=0
となる.
■解き方
t
2
−5t+4=0
(
t−1
)(
t−4
)=0
t=1,4
よって一般解は
y=
c
1
e
x
+
c
2
e
4x
(同次微分方程式の解法を参照)
c
1
,
c
2
は任意定数
ホーム>>カテゴリー分類>>微分>>微分方程式の公式を使った問題>>問題
最終更新日:
2022年4月22日
|